Trading Bot Development in Python, Drawing Graphs Using PyQt and Matplotlib

Python is gaining great popularity in data science and financial analysis. In particular, Python’s powerful libraries are becoming useful tools for many traders in developing automated trading systems. In this course, we will learn how to build a GUI using PyQt and visualize trading data using Matplotlib.

1. Overview of Automated Trading Systems

An automated trading system is a system that automatically executes trades according to predefined algorithms. These systems generate trading signals, make buy and sell decisions at appropriate times, and manage portfolios.

The main components of an automated trading system are as follows:

  • Market data collection
  • Signal generation
  • Order execution
  • Portfolio management

2. Installing PyQt and Matplotlib

To use PyQt and Matplotlib, you first need to install them. You can install the required packages using the command below:

            pip install PyQt5 matplotlib
        

3. Creating a GUI with PyQt

PyQt is a framework for creating GUI applications in Python. We will create a basic GUI for the automated trading system using PyQt5.

3.1 Basic GUI Structure

We will create a basic application window and add a text field and a button to receive input from the user.

Example Code:

        import sys
        from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout, QLabel, QLineEdit

        class AutoTraderApp(QWidget):
            def __init__(self):
                super().__init__()
                self.initUI()

            def initUI(self):
                self.setWindowTitle('Automated Trading System')
                layout = QVBoxLayout()

                self.label = QLabel('Enter Stock Code:')
                layout.addWidget(self.label)

                self.stock_input = QLineEdit(self)
                layout.addWidget(self.stock_input)

                self.submit_btn = QPushButton('Submit', self)
                self.submit_btn.clicked.connect(self.onSubmit)
                layout.addWidget(self.submit_btn)

                self.setLayout(layout)

            def onSubmit(self):
                stock_code = self.stock_input.text()
                print(f'Entered Stock Code: {stock_code}')

        if __name__ == '__main__':
            app = QApplication(sys.argv)
            ex = AutoTraderApp()
            ex.show()
            sys.exit(app.exec_())
    

4. Data Visualization with Matplotlib

Matplotlib is a widely used library for visualizing data in Python. It can be used to show the volatility of stock prices in graphs or visually represent the performance of automated trading algorithms.

4.1 Basics of Plotting

Let’s create a simple line graph using Matplotlib. We will generate stock data and display it in a graph.

Example Code:

        import matplotlib.pyplot as plt
        import numpy as np

        # Generate time (dates)
        days = np.arange(1, 31)  # From 1 to 30

        # Generate random stock prices
        prices = np.random.rand(30) * 100  # Prices between 0 and 100

        # Plotting the graph
        plt.plot(days, prices, marker='o')
        plt.title('Stock Price Changes')
        plt.xlabel('Date')
        plt.ylabel('Stock Price')
        plt.grid()
        plt.show()
    

5. Integrating PyQt and Matplotlib

Now let’s integrate Matplotlib graphs into the PyQt GUI. We will add functionality to display a graph for the stock code entered by the user.

Example Code:

        import sys
        from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout, QLabel, QLineEdit
        from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
        from matplotlib.figure import Figure
        import numpy as np

        class PlotCanvas(FigureCanvas):
            def __init__(self, parent=None):
                fig = Figure()
                self.axes = fig.add_subplot(111)
                super().__init__(fig)

            def plot(self, stock_code):
                days = np.arange(1, 31)
                prices = np.random.rand(30) * 100  # Random price data
                self.axes.clear()
                self.axes.plot(days, prices, marker='o', label=stock_code)
                self.axes.set_title(f'{stock_code} Stock Price Changes')
                self.axes.set_xlabel('Date')
                self.axes.set_ylabel('Stock Price')
                self.axes.grid()
                self.axes.legend()
                self.draw()

        class AutoTraderApp(QWidget):
            def __init__(self):
                super().__init__()
                self.initUI()

            def initUI(self):
                self.setWindowTitle('Automated Trading System')
                layout = QVBoxLayout()

                self.label = QLabel('Enter Stock Code:')
                layout.addWidget(self.label)

                self.stock_input = QLineEdit(self)
                layout.addWidget(self.stock_input)

                self.submit_btn = QPushButton('Submit', self)
                self.submit_btn.clicked.connect(self.onSubmit)
                layout.addWidget(self.submit_btn)

                self.plot_canvas = PlotCanvas(self)
                layout.addWidget(self.plot_canvas)

                self.setLayout(layout)

            def onSubmit(self):
                stock_code = self.stock_input.text()
                self.plot_canvas.plot(stock_code)

        if __name__ == '__main__':
            app = QApplication(sys.argv)
            ex = AutoTraderApp()
            ex.show()
            sys.exit(app.exec_())
    

6. Conclusion

In this course, we learned how to build a GUI for an automated trading system using PyQt and visualize stock price change graphs using Matplotlib. By combining GUI and data visualization, we can improve user experience and intuitively understand the performance of automated trading algorithms. Utilizing these techniques will allow us to develop a more efficient automated trading system.

Thank you!